

Seat No.

HB-003-2016033

B. Sc. (Sem. VI) (CBCS) Examination

April - 2023

Electrodynamics and Applied Optics: P-603

(New Course)

Faculty Code: 003

Subject Code: 2016033

Time: $2\frac{1}{2}$ / Total Marks: 70

Instructions:

- (1) All questions are compulsory.
- (2) Figure on right side indicate full marks.
- (3) Symbols have their usual meaning.
- 1 (a) Objective type questions:

4

2

- $(1) \quad \nabla \times \mathbf{E} =$
- (2) The integrands are evaluated at the retarded time, these are called .
- (3) When charges accelerate their fields can transport energy irreversibly out to infinity, the process is called
- (4) $P(r, t) = \oint B da$. (True/False)
- (b) Answer in brief: (any one)

(1) Find the charge and current distributions that would give rise to the potential.

$$V = 0, A = \begin{cases} \frac{\mu o k}{4C} (Ct - |x|)^2 \hat{Z}, & \text{for } |x| < ct, \\ 0, & \text{for } |x| > ct. \end{cases}$$

Where K is a constant and
$$C = \frac{1}{\sqrt{\epsilon_o \mu o}}$$

(2) Explain blueness of sky and redness of sunset with proper figure.

	(c)	Answer in detail : (any one)	3
		(1) What do you mean by gauge transformation?	
		(2) What is radiation?	
	(d)	Write a note on : (any one)	5
		(1) Explain Jefimenko's equations.	
		(2) Explain electric dipole radiation.	
2	(a)	Objective type questions:	4
		(1) Moving objects are shortened is called	
		(2) Moving clock run slow. True/False	
		(3) In classical mechanics, is mass times velocity.	
		(4) The relativistic energy is non zero even when the object	
		is stationary, the energy is called	
	(b)	Answer in brief: (any one)	2
		(1) A muon is traveling through the laboratory at $\frac{3}{5}$ the	
		speed of light. How long does it last?	
		(Take life time of muon 2×10^{-6} S)	
		(2) Two lumps of clay each of rest mass m, collides head-	
		on at $\frac{3}{5}$ C. When they stick together, find the mass of	
		composite lump.	
	(c)	Answer in detail : (any one)	3
		(1) Write and explain Einstein's postulates.	
		(2) Explain structure of space time.	
	(d)	Write a note on: (any one)	5
		(1) Explain Lorentz transformation.	
		(2) Explain relativistic energy and momentum.	
3	(a)	Objective type questions:	4
		(1) In which process light amplification occur?	
		(2) In Nd–YAG laser ions are active centres.	
		(3) The full form of LIDAR is	
		(4) laser is used in CD player.	
	(b)	Answer in brief: (any one)	2
		(1) The wavelength of emission is 6000 Å and the	
		coefficient of spontaneous emission is $10^6/S$. Determine	
		the coefficient for the stimulated emission.	
		(Take $\mu = 1 \ h = 6.62 \times 10^{-34} \text{ J.S}$)	

		(2) Find the value of R_1 for $f = 5 \times 10^{14}$ Hz at $T = 300$ K. (Take $K = 1.38 \times 10^{-23}$ J/K)	
	(c)	`	3
		(1) Explain: Optical resonant cavity.	
		(2) Explain: Population inversion.	
	(d)	Write a note on : (any one)	5
	()	(1) Explain the construction and working of Ruby laser.	
		(2) Explain : Holography.	
4	(a)	Objective type questions:	4
		(1) The intensity with increase in order of diffraction.	
		(2) X-rays are produced whenever high speed are stopped abruptly by target.	
		(3) Formation of Laue spots can be explained with the help	
		of law.	
		(4) X-ray produce chemical effect on photographic plate.	
		True/False.	
	(b)	Answer in brief: (any one)	2
	. ,	(1) Find the wavelength of 2nd order X-rays by NaCl crystal	
		at an angle of 4° (The grating element of NaCl is	
		2.81 $\overset{\circ}{A}$)	
		(2) An X-ray tube operating at 50 KV produces continuous	
		X-ray spectrum. If $C = 3 \times 10^8$ m/s, $h = 6.624 \times 10^{-34}$	
		J.S and $e = 1.6 \times 10^{-19}$ coulomb find the short wavelength	
		limit.	
	(c)	Answer in detail : (any one)	3
		(1) Obtain the expression for Bragg's law.	
		(2) Write the properties of X-rays.	
	(d)	Write a note on : (any one)	5
		(1) With neat diagram explain Bragg's spectrometer.	
		(2) Obtain Brillouin zones for bcc latice.	
5	(a)	Objective type questions:	4
	()	(1) The angle of incident for which the angle of refraction	
		is 90°, is called .	
		(2) The innermost cylindrical region of optical fibre is	
		known as	
		(3) Optical fibre works on the principle of	
		(4) is the measure of how much light can be	
		collected by optical fibre.	

- (b) Answer in brief: (any one)
 - (1) Calculate the numerical aperture of an optical fibre with a clad index of 1.50 and core index of 1.55.
 - (2) Calculate the fractional index change for a given optical fibre, if the refractive indices of the core and the cladding are 1.563 and 1.498 respectively.
- (c) Answer in detail: (any one)

3

2

- (1) Give medical applications of optical fibre.
- (2) Discuss: Attenuation.
- (d) Write a note on : (any one)

5

- (1) Derive an expression for acceptance angle of the optical fibre.
- (2) Draw the block diagram of fibre optics communication system and discuss the function of its components.

HB-003-2016033]